

The whole dried plant (410 g) was extracted $3 \times$ MeOH: after removal of the solvent *in vacuo*, the residue was extracted $3 \times$ 200 ml 1% HCl. The acidic fraction was basified with ammonia and extracted with CHCl_3 giving 380 mg solid. Preparative TLC of this residue [$\text{SiO}_2/\text{CHCl}_3$ with $\text{Ce}^4(\text{SO}_4)_2$ as spray reagent] gave 50 mg of *N,N'*-di-*o*-tolylethylendiamine.

N,N'-*Dt*-*o*-tolylethylendiamine. Recrystallization from *n*-pentane gave m.p. 70–71. λ_{max} 247 nm ($\log \epsilon$ 4.46), 291 (3.77); in EtOH, ν_{max} 3460, 3420, 1612, 1592 cm^{-1} in CHCl_3 . NMR (CDCl_3 , TMS) δ , 2.10 (s, 6 H, 2 Me-aryl), 3.46 (s, 4 H, N– CH_2 – CH_2 –N), 3.30 (broad band removed with D_2O , 2 NH), 6.64 (m, 4 H aromatic protons ortho or ortho and para to NH), 7.05 (m, 4 H aromatic protons meta to NH). The lack of equivalence of the 4 meta protons showed the probable structure. MS: *m/e* 240 (M^+ , 30) (found 240, 1632 ± 0.0027 ; calc. for $\text{C}_{16}\text{H}_{20}\text{N}_2$: 240, 1626) 121 (89), 120 (100), 118 (19), 106 (17), 91 (49), 79 (4), 78 (3), 77 (10), 65 (23).

Phytochemistry, 1975, Vol. 14, p. 314. Pergamon Press. Printed in England.

TRITERPENOID SAPOPENINS OF *SCHIMA MERTENSIANA*

ISAO KITAGAWA, AKIRA INADA, MARI UTSUNOMIYA and ITIRO YOSIOKA

Faculty of Pharmaceutical Sciences, Osaka University, Toyonaka, Toyonaka, Osaka, Japan

(Received 28 April 1974)

Key Word Index—*Schima mertensiana*; Theaceae; oleanene-type sapogenins; primulagenin A; dihydropriverogenin A; A_1 -barrigenol; barringtonenol C; R_1 -barrigenol.

Plant. *Schima mertensiana* Koidz. (Theaceae); syn. *S. boninensis* Nakai. **Source.** The Bonin Islands, Japan. **Previous work.** On related species. *S. kankawaensis* Hay (A_1 -barrigenol)[1] and *S. liukiuensis* Nakai (A_1 -barrigenol, R_1 -barrigenol)[2].

Present work. The MeOH extractive of the bark of *S. mertensiana* was partitioned between *n*-BuOH– H_2O . The saponin mixture obtained from the *n*-BuOH soluble portion after ordinary working-up procedures was subjected to acid hydrolysis followed by treatment with alkali and silica-gel chromatography. Primulagenin A ($3\beta,16\alpha,28$ -trihydroxy-olean-12-ene)[3], dihydropriverogenin A ($3\beta,16\alpha,22\alpha,28$ -tetrahydroxy-olean-12-ene)[4], A_1 -barrigenol ($3\beta,15\alpha,16\alpha,22\alpha,28$ -pentahydroxy-olean-12-ene)[5], barringtonenol C ($3\beta,16\alpha,21\beta,22\alpha,28$ -pentahydroxy-olean-12-ene)[6], and R_1 -barrigenol ($3\beta,15\alpha,16\alpha,21\beta,22\alpha,28$ -hexahydroxy-olean-12-ene)[5] were obtained in the respective yields of 2.2, 6.0, 35.8, 7.2 and 13.3% (from the total saponin mixture), and identified with the authentic specimens by direct comparison (m.p., IR, TLC). This is the first time that primulagenin A, dihydropriverogenin A and barringtonenol C have been isolated from *Schima* species.

Acknowledgement—The authors are grateful to Dr. H. Ishii, Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan for the plant material.

REFERENCES

1. Nozoe, T. and Kinugasa, T. (1935) *Nippon Kagaku Kaishi* **56**, 883.
2. Takahashi, T., Miyazaki, M., Yasue, M., Imakura, H. and Honda, O. (1963) *Nippon Mokuzai Gakkaishi* **9**, 59.
3. Bischof, B. and Jeger, O. (1948) *Helv. Chim. Acta* **31**, 1760.
4. Yosioka, I., Nishimura, T., Matsuda, A. and Kitagawa, I. (1971) *Chem. Pharm. Bull. (Tokyo)* **19**, 1186.
5. (a) Errington, S. G., White, D. E. and Fuller, M. W. (1967) *Tetrahedron Letters* 1289; (b) Ito, S., Ogino, T., Sugiyama, H. and Kodama, M. (1967) *ibid.*, 2289.
6. Yosioka, I., Nishimura, T., Matsuda, A. and Kitagawa, I. (1970) *Chem. Pharm. Bull. (Tokyo)* **18**, 1610.